Partial State in DataﬂoW_Bas’éd
Materialized Views

N 5 e '

Jon Gjengset — Doctoral Dissertation
jon@thesquareplanet.com / @jonhoo

My Committee

Robert Morris M. Frans Kaashoek Sam Madden Malte Schwarzkopf
(thesis advisor)

Why are we here?

To make databases better.

Database 101

You take some tables.

stories

votes

Database 101

To query, do this:

stories

votes

Insert vote

I stories

Database 101

To , do this:

Why are we here?

More orange work than

But orange is often more common!

Insert vote

stories

votes

Why are we here?

Repeated, unnecessary orange work.

Insert vote

stories

votes

But Jon, caches.

Queries are now fast again!

stories

votes

Cache

1. Insert vote ﬁ

stories I votes

Caches are great.

But caching is hard

N
=)
<
)
o
)
(=g
®
0
o
o
>
®

Automatic
database
caching.

Back to the title:

Partial State in Dataflow-Based Materialized Views

12

Back to the title:

Partial State in Dataflow-Based Materialized Views

13

Partial State in Dataflow-Based Materialized Views

Remembering Query Results

- Invented by the database community in the 1980s.
- Essentially “run the query and remember the result”.

- Key question is how to maintain the materialization:

- What happens if the underlying data changes?
Should be incremental: don’t execute from scratch each time.

Maintain on write or on subsequent read?

14

Back to the title:

Partial State in Dataflow-Based Materialized Views

15

Partial State in Dataflow-Based Materialized Views 16

Push Changes to Views

Dataflow has many definitions; here: data moves to compute.

Think “push-based computation”,

Data changes propagate through graph of operators.

Here: relational operators like joins, aggregations, and filters.

Each edge is a data dependency.
e.g., a join depends on its inputs.

Messages are deltas:

Each delta is a full row with a positive (add) or negative (remove) sign.

Partial State in Dataflow-Based Materialized Views

Example Dataflow Execution

CREATE MATERIALIZED VIEW
StoryWithVC

AS SELECT
stories.*,

COUNT (votes.user) AS votes ||~
FROM stories

JOIN votes
ON (votes.story_1id = stories.id)

GROUP BY stories.id;

stories

votes

«dol,,

StoryWithvC

17

“ Lu 01108 ”

Partial State in Dataflow-Based Materialized Views

Example Dataflow Execution

CREATE MATERIALIZED VIEW
StoryWithVC

AS SELECT
stories.*,

COUNT (votes.user) AS votes ||~
FROM stories

JOIN votes
ON (votes.story_id = stories.id)

GROUP BY stories.id;

stories

votes

«dol,,

StoryWithvC

18

“ Lu 01108 ”

Partial State in Dataflow-Based Materialized Views

Example Dataflow Execution

CREATE MATERIALIZED VIEW
StoryWithVC

AS SELECT
stories.*,

COUNT (votes.user) AS votes ||~
FROM stories

JOIN votes
ON (votes.story_id = stories.id)
GROUP BY stories.id;

stories

:

votes

«dol,,

M|

}

StoryWithvC

19

“ Lu 01108 ”

Partial State in Dataflow-Based Materialized Views

Example Dataflow Execution

CREATE MATERIALIZED VIEW
StoryWithVC

AS SELECT

stories votes

stories.*,

COUNT (votes.user) AS votes :%j
FROM stories "‘ bd

JOIN votes

ON (votes.story_1id = stories.id)]
GROUP BY stories.id; II StoryWithVC I

SELECT * FROM StoryWithVC WHERE id = ? —’////f

Partial State in Dataflow-Based Materialized Views
Example Dataflow Execution

CREATE MATERIALIZED VIEW

StoryWithVC 1. Insert vote *
AS SE L ECT stories votes
stories. x,

COUNT (votes.user) AS votes 5 |
FROM stories b

JOIN votes

ON (votes.story_1id = stories.id)
GROUP BY stories.id; StoryWithVC

Partial State in Dataflow-Based Materialized Views 22
Example Dataflow Execution

CREATE MATERIALIZED VIEW

Sto ry\/\h' thVC 1. Insert vote *

AS SELECT stories votes

stories.*,

COUNT (votes.user) AS votes 5 l 2. Stream
. through

FROM stories m dataflow

JOIN votes

ON (votes.story_1id = stories.id)
GROUP BY stories.id; StoryWithVC

Partial State in Dataflow-Based Materialized Views 23
Example Dataflow Execution

CREATE MATERIALIZED VIEW

Sto ry\/\h' thVC 1. Insert vote *

AS SELECT stories votes

stories.*,

COUNT (votes.user) AS votes 5 l 2. Stream
. through

FROM stories m dataflow

JOIN votes ;;:g

ON (votes.story_1id = stories.id)
GROUP BY stories.id; StoryWithVC

Partial State in Dataflow-Based Materialized Views 24
Example Dataflow Execution

CREATE MATERIALIZED VIEW

StoryWithVC 1. Insert vote *
AS SELECT stories votes
stories.*,
COUNT (votes.user) AS votes 5 2l;Stre:m
FROM stories — 7, stories., 42 m fyj ;art‘_::lgow
+ 7, stories.*, 43
JOIN votes

ON (votes.story_1id = stories.id)
GROUP BY stories.id; StoryWithVC

Partial State in Dataflow-Based Materialized Views 25
Example Dataflow Execution

CREATE MATERIALIZED VIEW

Story\/\h'thVC 1. Insert vote *

AS SELECT stories votes

stories.*,

COUNT (votes.user) AS votes 5 l 2. Stream
. through

FROM stories m dataflow

JOIN votes 3. Update view

ON (votes.story_1id = stories.id)
GROUP BY stories.id; StoryWithVC

Back to the title:

Partial State in Dataflow-Based Materialized Views

26

Partial State in Dataflow-Based Materialized Views

Learning to Forget

- Chances are that most entries in the view are not accessed.

- Old and unpopular stories are wasting memory.

- Need to evict old entries, and only add new ones on demand.

- Three main contributions:

- Notion of missing state in materialized views.
- Upqueries to populate missing state using dataflow.

- Implementation and evaluation of partial state in Noria.

27

Partial State in Dataflow-Based Materialized Views

View and Query are Separate

CREATE MATERIALIZED VIEW
StoryWithVC
AS SELECT

stories.*,

COUNT (votes.user) AS votes

FROM stories

JOIN votes

ON (votes.story_1id = stories.id)
GROUP BY stories.id;

SELECT * FROM StoryWithVC WHERE id =

stories

votes

I I StoryWithvC

S

28

Partial State in Dataflow-Based Materialized Views
View Must Know Query Parameter(s)

CREATE MATERIALIZED VIEW

StoryWithVC
AS SELECT .
stories votes
stories.*,
COUNT (votes.user) AS votes 5 |
FROM stories b
JOIN votes

ON (votes.story_id = stories.id) = .
GROUP BY stories.id
WHERE stories.id = ?;
\

Partial State in Dataflow-Based Materialized Views

Queries Can Miss in Materialized View

CREATE MATERIALIZED VIEW

StoryWithVC
AS SE L ECT stories votes
stories. x,
COUNT (votes.user) AS votes ::é:]
FROM stories b
JOIN votes

ON (votes.story_1id = stories.id)
GROUP BY stories.id -
WHERE stories.id = 7;

\

Partial State in Dataflow-Based Materialized Views

Misses Trigger Upqueries

CREATE MATERIALIZED VIEW
StoryWithVC
AS SELECT
stories.*,
COUNT (votes.user) AS votes
FROM stories
JOIN votes
ON (votes.story_1id = stories.id)
GROUP BY stories.id
WHERE stories.id = 7;
\

stories

votes

Partial State in Dataflow-Based Materialized Views
Upqueries Can Trigger Further Upqueries

CREATE MATERIALIZED VIEW
StoryWithVC

AS S E |_ E CT stories votes

stories.*,
COUNT (votes.user) AS votes 5
FROM stories b
JOIN votes

ON (votes.story_1id = stories.id)
GROUP BY stories.id -
WHERE stories.id = 7;

\

Partial State in Dataflow-Based Materialized Views

Answer May Reside in Intermediate State

CREATE MATERIALIZED VIEW

StoryWithVC
AS SE L ECT stories votes
stories. x, ¥
COUNT (votes.user) AS votes ﬁii*_ 5
FROM stories b [
JOIN votes

ON (votes.story_1id = stories.id)
GROUP BY stories.id -
WHERE stories.id = 7;

\

Partial State in Dataflow-Based Materialized Views

Response Uses Normal Dataflow

CREATE MATERIALIZED VIEW
StoryWithVC

AS SELECT

stories

stories.*,

COUNT (votes.user) AS votes
FROM stories

JOIN votes

ON (votes.story_1id = stories.id)

GROUP BY stories.id

WHERE stories.id = 7;
\

Partial State in Dataflow-Based Materialized Views

Response Uses Normal Dataflow

CREATE MATERIALIZED VIEW
StoryWithVC

AS SELECT

stories

votes

stories.*,

COUNT (votes.user) AS votes
FROM stories

JOIN votes

ON (votes.story_1id = stories.id)

GROUP BY stories.id

WHERE stories.id = 7;
\

Partial State in Dataflow-Based Materialized Views
Response Uses Normal Dataflow

CREATE MATERIALIZED VIEW

StoryWithVC
AS SE L ECT stories votes
stories. x,
COUNT (votes.user) AS votes ::é:]
FROM stories b
JOIN votes

ON (votes.story_1id = stories.id) =1
GROUP BY stories.id
WHERE stories.id = 7;

\

Partial State in Dataflow-Based Materialized Views

Response Uses Normal Dataflow

CREATE MATERIALIZED VIEW
StoryWithVC

AS SELECT

stories

votes

stories.*,

COUNT (votes.user) AS votes
FROM stories

JOIN votes

ON (votes.story_1id = stories.id) [
GROUP BY stories.id

WHERE stories.id = 7;
—

Partial State in Dataflow-Based Materialized Views

Next Query with Same Parameter is Fast

CREATE MATERIALIZED VIEW

StoryWithVC
AS SE L ECT stories votes
stories. x,
COUNT (votes.user) AS votes ::é:]
FROM stories b
JOIN votes

ON (votes.story_1id = stories.id) — :

GROUP BY stories.id

WHERE stories.id = 7;
\

Partial State in Dataflow-Based Materialized Views

To Evict: Mark as Missing Again

CREATE MATERIALIZED VIEW
StoryWithVC
AS SELECT
stories.*,
COUNT (votes.user) AS votes
FROM stories
JOIN votes
ON (votes.story_1id = stories.id)
GROUP BY stories.id
WHERE stories.id = ?7;

stories

Evict 7

Partial State in Dataflow-Based Materialized Views
No Need to Update Missing State!

CREATE MATERIALIZED VIEW
StoryWithVC

AS SELECT .
stories

stories.*,

COUNT (votes.user) AS votes)/

FROM stories

JOIN votes
ON (votes.story_1id = stories.id) "
GROUP BY stories.id -
WHERE stories.id = ?7;

Partial State in Dataflow-Based Materialized Views

No Need to Update Missing State!

CREATE MATERIALIZED VIEW
StoryWithVC

AS SELECT

stories

stories.*,
COUNT (votes.user) AS votes

FROM stories %

JOIN votes

ON (votes.story_1id = stories.id)

GROUP BY stories.id -

WHERE stories.id = ?7;

Intermission
Related work

Materialized View Maintenance

- Primarily targets analytics workloads = infrequent reads.
- Little or no support for on-demand queries.

- No support for eviction.

43

Automated Caching Systems

- Few are general-purpose.
- Many only support invalidation, not updates.

- Often limited to specific database interaction, not general SQL.

44

Dataflow and Stream Processing

- Usually focused on write performance.
- Focus on strong consistency at the cost of read latency.

- Limited support for on-demand compute & eviction.

45

Are we done?

In Practice, Things are Hard

- Must ensure that data changes take effect exactly once.

- Traditionally easy, but hard in this model because:

Upqueries hold past state which may be concurrently updated.

Updates may be discarded early.

- Many hazards (see thesis), but we’ll focus on one.

47

Incongruent Join Evictions

48

What is an Incongruent Join?

CREATE MATERIALIZED VIEW
StoriesWithAuthor
AS SELECT
stories.x*,
users.name AS aname,
FROM stories
JOIN users
ON (stories.author = users.id)
WHERE stories.id = ?;

b

stories

users

StoriesWithAuthor

49

Query Key # Join Key

CREATE MATERIALIZED VIEW

StoriesWithAuthor

AS SELECT stories users
stories.*,

users.name AS aname,

FROM stories b4

JOIN users
ON (stories.author = users.id)
WHERE stories.id = ? ; StoriesWithAuthor

Upqguery Works Correctly

CREATE MATERIALIZED VIEW
StoriesWithAuthor

AS SELECT :
stories users

stories.*,

users.name AS aname,

FROM stories

JOIN users

ON (stories.author = users.id)
WHERE stories.id = 7; -

Upqguery Works Correctly

CREATE MATERIALIZED VIEW
StoriesWithAuthor

AS SELECT :
stories users

stories.*,

users.name AS aname,

FROM stories

JOIN users

ON (stories.author = users.id)
WHERE stories.id = 7; -

7, author: 42

Upqguery Works Correctly

CREATE MATERIALIZED VIEW

StoriesWithAuthor
AS SELECT
stories.*,
users.name AS aname,
FROM stories
JOIN users
ON (stories.author =
WHERE stories.id = 7;

users.id)

stories

7, author: 42 l
P4

e

/

/

/

53

users

V- E— 42, Lena

=

l

54

Upqguery Works Correctly

CREATE MATERIALIZED VIEW
StoriesWithAuthor users
AS SELECT . H | |

stories.*, R

users.name AS aname,

FROM stories

JOIN users

ON (stories.author = users.id)
WHERE stories.id = 7;

7, stories.*, aname: Lena

Recall This Figure?

stories

55

What if the Author Changes?

CREATE MATERIALIZED VIEW
StoriesWithAuthor

AS SELECT -7, ..., author: 42
stories. x, + 7, ..., author: 43
users.name AS aname,

FROM stories

JOIN users

ON (stories.author = users.id)

WHERE stories.id = 7;

stories

users

56

Change Must Propagate to the View

CREATE MATERIALIZED VIEW
StoriesWithAuthor

AS SELECT

stories

users

stories.*,

users.name AS aname, ; thor: 42
-7, ..., author:

FROM stories + 7, ..., author: 43
JOIN users

ON (stories.author = users.id) [

WHERE stories.id = 7; M

Each Change is Joined

CREATE MATERIALIZED VIEW

58

StoriesWithAuthor

AS SELECT stories
stories.*, l
users.name AS aname, ~ 7, ... author: 42

FROM stories + 7, ..., author: 43 allh
JOIN users l

ON (stories.author = users.id) [

WHERE stories.id = 7; M

Just One More Step

CREATE MATERIALIZED VIEW
StoriesWithAuthor

AS SELECT

users

stories
stories. x, l
users.name AS aname,
. -7, ...,aname: Lena b |
FROM stories + 7, ..., author: 43
JOIN users

ON (stories.author = users.id) [

WHERE stories.id = 7;

59

60

State for New Author is Missing!

CREATE MATERIALIZED VIEW

StoriesWithAuthor users

AS SELECT .
) stories 43,77?
stories. x, 7
| ,
users.name AS aname, /
. -7, ...,aname: Lena b ez

FROM stories + 7, ..., author: 43
JOIN users l

ON (stories.author = users.id) = I

WHERE stories.id = 7; M

What Do We Do?

Cannot produce needed update!

Cannot forward just the negative.

users

Cannot drop update altogether.

stories

-7, ...,aname: Lena
+ 7, ..., author: 43

61

43, 7?7

What Do We Do?

- Cannot produce needed update!

users

- Cannot forward just the negative.

stories
- Cannot drop update altogether. l , 43,777
/
- Fill missing state? _ 7 aname: Lena 7
9 cooy o | <
+ 7, ..., author: 43 b

What Do We Do?

- Cannot produce needed update!

users

- Cannot forward just the negative.

stories
_ 43, ??7?
Cannot drop update altogether. ,
/
. .. ,
FH-issH S states -7, ...,aname: Lena ”
M |=
+ 7, ..., author: 43

What Do We Do?

Cannot produce needed update!

Cannot forward just the negative.

Cannot drop update altogether.

Fitt rissimestate?

Evict downstream state.

S X

stories

e: Lena
hor: 43

users

64

What Do We Do?

Cannot produce needed update!

Cannot forward just the negative.

Cannot drop update altogether.

Fitt rissimestate?

Evict downstream state.

Next query fills it again.

stories

users

65

Does it work?

Need a Realistic Test Subject
- Lobste.rs: a Hacker News-like news aggregator.

- Users submit stories, vote for and comment on them, etc.
- Open-source, so we can see the queries.

- Data statistics available, so we know the workload.

- Workload generator: synthesize Lobste.rs-like requests.

67

Throughput

Fixed available resources.

Pages/s

8000

6000

4000

2000

417

MySQL

68

Throughput

Fixed available resources.

Pages/s

8000

6000

4000

2000

417

]
MySQL

4600

Noria without partial

69

Throughput

Fixed available resources.

Pages/s

8000

6000

4000

2000

417

]
MySQL

4600

Noria without partial

7700

Noria

70

Memory use

Fixed throughput & runtime.

Resident Virtual Memory [GB]

128

96

64

32

102.1

Noria without partial

35.1

Noria

A

Noria vs. cache

72

vS. Redis

Idealized cache workload.

Achieved throughput [requests/s]

16M

14M

12M

10M

8M

6M

4M

M

oM

875000

Redis

73

14000000

~
(%)
~
()
Eod
(%))
)
=
&7
)
=
-~
=
Q.
=
D
=
o
AL
=
+—
o]
)
=
&
=
[3)
<

vS. Redis

|dealized cache workload. —

Redis Redis x 16
(theoretical)

Redis is single-threaded, so 16x is extrapolated.

14000000

9000000

~
(%)
~
()
Eod
(%))
)
=
Gy
1)
=
-~
=
Q.
=
D
=
o
.
=
+—
o]
)
>
&
=
[3)
<

vS. Redis

|dealized cache workload. —

Redis Redis x 16
(theoretical)

Redis is single-threaded, so 16x is extrapolated.

Wrapping things up

Future work

Noria is neither perfect nor complete.

- Range queries, cursors, time-windowed operators.
- Upstream database integration.
- Maintaining downstream views.

- Fault tolerance.

77

Acknowledgements

Robert Morris

M. Frans Kaashoek

Sam Madden

Malte Schwarzkopf

79

I] I == | Parallel & Distributed
il Operating Systems Group

81

82

83

Conclusion

My thesis enables materialized views to be used as caches.

It does so by allowing state to be missing from materializations,

and using upqueries to populate missing state on demand.

The resulting system provides automated caching for SQL queries,

and reduces the need for complex, ad hoc caching logic.

Thank you — please ask questions!
jon@thesquareplanet.com

Backup slides

85

Page % | W | Q | Description

Story 55.8 | 1| 14 | Renders an individual story’s page, in-
cluding its popularity score, comments,
and the scores of its comments.

Front page | 30.1 | 0 | 14 | Lists the 25 most highly scored stories,
along with their authors and scores.

User 6.7 0| 7| Renders a user summary page, including
what story “tags” they contribute to.

Comments | 4.7 | 0| 9 | Like the front page, but for comments.

Recent 1.0 0| 14 | 25 most recently added stories, along
with their authors and scores.

Vote 1.2 | 1| 2| Voteup/down a given comment or story.

Comment 04| 2| 5| Add a new comment to a story.

Table 6.1.: Pages in Lobsters. % indicates the percentage of requests that
load the given page. W is the number of writes performed by a
given page. Q is the number of (read) queries a page issues.

Operator data size

214MB

Noria

16.2GB

Noria without partial

86

87

B 25%-50% B 50%-90% o 90%-95%
95%—-99% 99%—-Max == Mean

[S—
»n
1

100ms -

Page latency

10ms -

Ims - 1 | 1 1 | 1

| 2 4 8 16 32 64 128
Time after start [s]

CDF [%]

100 -

88

05 -
Base table + view VmRSS

90 - 5.6GB + 16.3GB
- 5 6GB + 14.3GB
— 5 6GB + 13.5GB
— 5 6GB + 13.1GB

79 = 1 : TR 1 ' ' i '

Sms 10ms 20ms 50ms

75 -

50 -

25 -

Ims 2ms 4ms 6ms 8ms

Page latency

89

05 -

90 -
i In-memory base tables
. == =1 (On-disk base tables

75 = 1 'I ' t ' 1 I y 1] !

S5ms 10ms 20ms 50ms

75 - , -

50 - = — . -

25 - z

Ims 2ms 4ms 6ms 8ms

Page latency

()
-
1

VmRSS @ 1M/s

E 40 - 2.5GB + 4.9GB
~ —e— 2.5GB + 4.6GB
2 30 NEE== 2.5GB + 4.4GB
= —e— 2.5GB +4.1GB
2L

= 20 -

X

=

i 10 -

(@

250k 500k 750k 1.0OM 1.2M 1.5M 1.8M 2.0M
Achieved throughput [requests per second]

90

< 100 -

New view hit %
)]
)

[\

W

-

W
|

Writes/s

-
1

@ Noria

® Noria without partial

New view added

0 10 20 30 40 50 60

Time after migration [s]

91

Must be cached [%]

10 -
—— 90/1 (0t=1.150) 7
—e— 80/5 (¢=0.990) o
—o— 80/20 (¢=0.886)

=9 = : yniform

00]
1
.

6_

0 200k 400k 600k 800k 1.0M

Expected number of requests per second

92

