
Demystifying unsafe code

Jon Gjengset
@jonhoo

or: “it’s just C” vs “certain doom”

When we need
unsafe.

Why unsafe?
Lets us write code whose safety relies on
invariants the compiler cannot check.

Use-cases:

- Working with hardware devices.
- Interacting with external code.
- Writing concurrency primitives.
- Overcoming borrow checker limitations.
- Performance optimizations.

Working with hardware devices.
Want to show text on screen during boot.

We know things the compiler does not:

- 0xB8000 is mapped to writeable video memory.
- No-one else is writing to 0xB8000.

let vga = unsafe {
 std::slice::from_raw_parts_mut(
 0xB8000 as *mut u8, 80 * 24
)};

Interacting with external code.
Want to call into a C library.

Compiler doesn’t know if the C code does something unsafe!

We are asserting that the compiler can trust the C code.

extern “C” { fn c_abs(input: i32) -> i32; }
fn main() {
 println!(“{}”, unsafe { c_abs(-42)});
}

Writing concurrency primitives.
Want to implement Mutex.

Compiler can’t check that only one &mut T exists at a time.

fn lock(&self) -> MutexGuard<T> {
 while !self.held.compare_and_swap(false, true, SeqCst) {}
 MutexGuard::new(self)
}
impl<T> DerefMut for MutexGuard<T> {
 fn deref_mut(&mut self) -> &mut T {
 unsafe { &mut *self.ptr }

Overcoming borrow checker limitations.
Want to return reference early.

Compiler will currently reject this valid code.

fn next(buffer: &mut String) -> &str {
 loop {
 let event = parse(buffer);
 if true { return event; }
 }}
fn parse(buffer: &mut String) -> &str { … }

Performance optimizations.
Want to remove any and all overheads.

Always measure first. Very rarely worth it.

#[repr(C)]
struct SerializedStruct { … }

unsafe fn cast_deserialize(i: &[u8]) -> &SerializedStruct {
 &*(i.as_ptr() as *const SerializedStruct)
}

Unsafe gone
wrong.

Why not unsafe?
With unsafe, we tell the compiler that the code is ok,
because we checked it manually.

That is, we checked that the code never violates any part of
the Rust type system. We asserting that the unsafe code we
wrote is safe.

All comes down to: are you sure?

Why not unsafe?
The compiler assumes all code follows Rust safety rules.
That is, it assumes no code ever:

- Dereferences dangling/unaligned pointers.
- Violates reference aliasing rules.
- Causes an unsynchronized data race with a write.
- Produces an invalid value.
- … and a few others.

That includes unsafe code!

Effects of incorrect unsafe.
Usually, incorrect unsafe == undefined behavior.

And undefined behavior == russian roulette.

Effect ranges from none to crashes to arbitrary data
corruption. Effect may not appear today, but appear
tomorrow. You have no guarantees.

You should always avoid undefined behavior.

Examples of things gone wrong.
fn compute(i: &u32, o: &mut u32) {
 if *i > 10 {
 *o = 1;
 }
 if *i > 5 {
 *o *= 2;
 }
}

fn compute(i: &u32, o: &mut u32) {
 let cached_i = *i;
 if cached_i > 10 {
 *o = 2;
 } else if cached_i > 5 {
 *o *= 2;
 }
}

In Rust, the compiler is allowed to assume that this optimization is okay!

Examples of things gone wrong.
impl<T> Vec<T> {
 fn extend_map<U, F>(&mut self, us: &[U], mut f: F)
 where F: FnMut(&U) -> T {
 self.reserve(us.len()); let cur_len = self.len();
 unsafe { self.set_len(cur_len + us.len()) };
 let into = unsafe { self.as_mut_ptr().add(cur_len) };
 for u in us {
 unsafe { std::ptr::write(into, f(u)) }; into += 1;
 }}}

What if f() panics?

Examples of things gone wrong.
impl<T> Drop for LazyDropVec<T> {
 fn drop(&mut self) {
 for v in self.drain() {
 unsafe { COLLECTOR.drop_later(v) };
 }
 }
}

What if T contains &mut TcpStream and writes on drop?

Examples of things gone wrong.
macro_rules! offset_of {
 ($t:path, $field:tt) => {
 let uninit = MaybeUninit::<$t>::uninit();
 let ptr = uninit.as_ptr();
 let fptr = unsafe { &(*ptr).$field as *const _ };
 (fptr as usize) - (ptr as usize)
 }
}

What if $t is #[repr(packed)]?

Integrity of unsafe code.
Safe interfaces to unsafe code must behave correctly
no matter what the safe code does.

- Non-deterministic implementation of Eq
- Broken implementation of Ord
- Weird implementations of Deref.

Can only assume safety of safe code, not correctness.

Integrity of “internal” unsafe code.
Safe code in the same module can access non-public things!

Encapsulation of unsafe must happen at visibility boundary.

Do not assume callers will remember safety invariants.
Never expose unsafe method as safe, even internally!

Is all hope lost?

No!
- Be sure you need it.
- Be, like, really sure.
- Read the nomicon.
- Be very careful.
- Document all unsafe {}
- Run miri & ASAN in CI.

It is possible to write
correct unsafe code.

An interpreter for Rust’s
mid-level intermediate
representation.

Basically, it can run Rust
code in the compiler.

Can check that the code
doesn’t do anything “bad”.

(works on the playground!)

An aside on MIRI
let mut x: Vec<String> = Vec::new();
x.extend_map(&["foo"], |_| panic!());

error: Miri evaluation error: type validation failed: encountered
uninitialized bytes, but expected something greater or equal to 1
 --> rust/src/liballoc/raw_vec.rs:190:9

|
 190 | self.ptr.as_ptr()

| ^^^^^^^^
= note: inside call to `alloc::raw_vec::RawVec::<u8>::ptr`
= note: inside call to `Vec::<u8>::as_mut_ptr`
= note: inside call to `<Vec<u8> as DerefMut>::deref_mut`
= note: inside call to `<Vec<u8> as IndexMut>::index_mut`
= note: inside call to `<Vec<u8> as Drop>::drop`

No!
- Be sure you need it.
- Be, like, really sure.
- Read the nomicon.
- Be very careful.
- Document all unsafe {}
- Run miri & ASAN in CI.

It is possible to write
correct unsafe code.

