

I’m Jon 👋
@jonhoo on the internet;
formerly MIT, now Rust at AWS

Supply Chain Security
MIT 6.5660 — 2023

All the software you use matters.

Supply Chain Attacks are increasing

According to the EU, top threat in the next 7 years

Stricter supply chain security rules in the EU

Stricter supply chain security rules in Japan

Executive Order in the US

New supply chain security guidance; no laws (yet)

New supply chain security guidance in the UK

https://www.sonatype.com/resources/vulnerability-timeline

When you have a moment:

https://www.sonatype.com/resources/vulnerability-timeline

The scariest part: many aren’t even aware

Do you know:
(the answer better be yes)

((but it probably isn’t))

What you are deploying where?

Where it came from?

What’s in it?

Do you know:
(the answer better be yes)

((but it probably isn’t))

What you are deploying where?

Where it came from?

What’s in it?

Questions you should be able to answer:
- What software is currently at each host?

- What software was on host H at time T?

- Why did a deploy happen to host H at time T?

- Where are artifacts of software version V deployed?

- When were artifacts of software version V no longer in use anywhere?

- What configuration did V have on host H at time T?

Every deployment should be logged
- How was the deployment initiated?

- When did the deployment happen?

- What went into the deployment?

- What was deployed to?

This information must be append-only, durable, and kept long term.

Every host matters
Production hosts

Developer environments

Beta environments

Embedded devices

Customer devices

Other environments (e.g., Lambda, CloudFlare Workers)

Do you know:
(the answer better be yes)

((but it probably isn’t))

What you are deploying where?

Where it came from?

What’s in it?

Can you trace every artifact back
to sources you trust?

Verified path from only trust anchors
If you downloaded it:

- Do you trust the entity that built it?
- How do you know that entity actually built it?
- Did that entity verify ↓↓↓ (and how do you know?)

If you built it yourself:

- How did you get the source?
- Is that source what the author intended to publish?
- Do you trust the tools you downloaded the source with?
- Do you trust the tools you verified the source with?
- Do you trust the tools you built the artifact with?
- Do you trust the host you’re building the source on?

Tained sources are real.

Dependency Confusion (2021)

Dependency Confusion (2021)

SolarWinds (2020)

University of Minnesota & Linux (2021)

Credential Leaks (constantly)

PHP git repository compromise (2021)

Rogue maintainers (2022)

Linux Mint ISO hack (2016)

Fighting tainted sources is difficult
SigStore to have authors sign what they publish.

The Update Framework (TUF) to check that registries behave.

Mandate 2FA for publishing to mitigate leaked credentials.

Automated continuous monitoring of known risks (like CVEs).

Ultimately, you’re at the mercy of authors…

 …so choose the authors you’ll depend on wisely.

Carl Sagan

If you wish to make an apple
pie from scratch, you must first
invent the universe.

Do you know:
(the answer better be yes)

((but it probably isn’t))

What you are deploying where?

Where it came from?

What’s in it?

One artifact, many inputs
Regular dependencies.

Dependencies from the build host.

Downloads during the build.

Vendored or inlined sources.

Bundled binary artifacts.

Any of the above transitively…

Heuristics will only get you so far.

Software
Bill of Materials

BoMs have existed elsewhere for ages
- Started in car manufacturing, since everywhere.
- Helps for:

- Design: which part should go there?
- Sales: what parts do I order?
- Manufacturing: which part goes here?
- Repair: which part broke?
- Recall: is the affected part present?

- Similar benefits for software.

Provenance (origin info) is useful
- Security breadcrumbs

- Tells you if something is at-risk (e.g., via CVE + NVD)
- May tell you how it is at-risk
- Can also tell you if it is not!

- License and compliance information
- Supply chain funding (in theory)
- Waste identification
- Quality assessment (e.g., maintenance status/EoL)

Less important to an attacker
A list of potential weak-points, true.

But in practice, attackers:

- already have decent heuristics and other incomplete channels;
- can probe for weaknesses directly;

The SBOM is more incrementally-useful to defenders.

SBOMs are hierarchical lists of contents
I produce one for my software.

It includes a list of records, each one holding:

Multiple data formats exist. Two common ones are:

- Software Package Data Exchange (SPDX)
- Software Identification Tagging (SWID)

Component name Version string Hash UID

Supplier name Author Relationship Relationship assertion

SBOMs can be combined
If you use my software, you can concatenate my SBOM.

Incomplete SBOMs are okay — there’s incremental benefit!

Don’t even need to publish your SBOMs!

SBOMs also combine horizontally
Doesn’t have to be “included in”:

- “was built by”
- “was present when built”
- “generated by”
- “patched with”
- “read data from”
- etc.

You can keep adding info and improving analysis independently.

Do you know:
(the answer better be yes)

What you are deploying where?

Where it came from?

What’s in it?

