

@jonhoo on the internet;
formerly MIT, now Rust at AWS

Supply Chain Security

MIT 6.5660 — 2023

All the software you use matters.

There has been an About

astonishing

7420/ 6 out of every 7
O project vulnerabilities

average annual come from transitive @

increase in dependenc:les

Software Supply

Chain attacks over

the past 3 years. :

Key Finding Key Finding

Supply Chain Attacks are increasing

** % IDENTIFYING EMERGING CYBER SECURITY THREATS AND CHALLENGES FOR 2030
x . March 2023
J enisa

* *
x *

TABLE OF CONTENTS

2. INTRODUCTION 6
2.1 BACKGROUND 6
2.2 PURPOSE OF THIS EXERCISE 6
2.3 TARGET AUDIENCE 7
3. EMERGING CYBERSECURITY THREATS FOR 2030 8
3.1 SUPPLY CHAIN COMPROMISE OF SOFTWARE DEPENDENCIES - #1 11
3.2 ADVANCED DISINFORMATION / INFLUENCE OPERATIONS (10) CAMPAIGNS - #2 13
3.3 RISE OF DIGITAL SURVEILLANCE AUTHORITARIANISM / LOSS OF PRIVACY - #3 13

3.4 HUMAN ERROR AND EXPLOITED LEGACY SYSTEMS WITHIN CYBER-PHYSICAL ECOSYSTEMS - #4 14

According to the EU, top threat in the next 7 years

European English @
Commission

Search

Home > Press corner > State of the Union: New EU cybersecurity rules

Press release 15 September 2022 Brussels

State of the Union: New EU cybersecurity rules
ensure more secure hardware and software
products

Stricter supply chain security rules in the EU

¥y f N

TOKYO (5 a.m.)

TODAY'S PRINT EDITION THE INDEPENDENT VOICE IN ASIA

= MENU

BUSINESS

Japan passes economic security bill to
guard sensitive technology

REUTERS, KYODO [SHARE May 11,2022

Japan's parliament passed an economic security bill Wednesday
aimed at guarding technology and reinforcing critical supply chains,
while also imposing tighter oversight of Japanese firms working in
sensitive sectors or critical infrastructure.

Measures in the legislation, which is primarily aimed at warding off
risks from China, will be implemented over two years once it is
enacted, according to the bill. It comes after the United States imposed
restrictions on technology imports, such as on semiconductors, amid
growing tension with Beijing.

Stricter supply chain security rules in Japan

~. thejapantimes =8

Q

SN

(., FEDERAL REGISTER

NATIO

The Daily Journal of the United States Government
ARCHIVES

983

Improving the Nation's Cybersecurity

A Presidential Document by the Executive Office of the President on 05/17/2021

PUBLISHED DOCUMENT

Executive Order 14028 of May 12, 2021

Improving the Nation's Cybersecurity

® By the authority vested in me as President by the Constitution and the laws of

Executive Order in the US

)

[\ Signin Sign up

I (- Presidential Document Il

Sec. 4. Enhancing Software Supply Chain Security. (a) The security of software
used by the Federal Government is vital to the Federal Government's ability to
perform its critical functions. The development of commercial software often
lacks transparency, sufficient focus on the ability of the software to resist
attack, and adequate controls to prevent tampering by malicious actors. There
is a pressing need to implement more rigorous and predictable mechanisms
for ensuring that products function securely, and as intended. The security
and integrity of “critical software”—software that performs functions critical
to trust (such as affording or requiring elevated system privileges or direct
access to networking and computing resources)—is a particular concern.
Accordingly, the Federal Government must take action to rapidly improve the
security and integrity of the software supply chain, with a priority on
addressing critical software.

NIST SP 800-161r1,
Cybersecurity Supply
Chain Risk Management
Practices for Systems and
Organizations

1. INTRODUCTION
1.1. Purpose
1.2. Target Audience

1.3. Guidance for Cloud
Service Providers

1.4. Audience Profiles
and Document Use
Guidance

1.4.1. Enterprise Risk
Management and
C-SCRM Owners and
Operators

1.4.2. Enterprise,
Agency, and Mission
and Business
Process Owners and
Operators

1.4.3. Acquisition and
Procurement Owners
and Operators

1.4.4. Information
Security, Privacy, or
Cybersecurity
Operators

1.4.5. System
Development,
System Engineering,
and System
Implementation
Personnel

— 4+ Automatic Zoom v (R

NIST Special Publication
NIST SP 800-161r1

Cybersecurity Supply Chain Risk
Management Practices for Systems
and Organizations

Jon Boyens

Angela Smith

Computer Security Division
Information Technology Laboratory

Nadya Bartol

Kris Winkler

Alex Holbrook
Matthew Fallon
Boston Consulting Group

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-161r1

May 2022

New supply chain security guidance; no laws (yet)

National Cyber
SeCUI’ITy Ceﬂtre ABOUTNCSC CIsP REPORT AN INCIDENT CONTACT US e

Home Information for... Advice & guidance Education & skills Products & services News, blogs, events...

New ‘supply chain mapping’
guidance

The latest addition to the NCSC's suite of supply chain guidance is now

available.
Supply chain mapping is the process of recording, storing and using) WRITTEN BY
information gathered from suppliers who are involved in a company'’s lan M
supply chain. Building on our existing supply chain guidance, we're ' Deputy Director for
pleased to announce new guidance that focusses explicitly on this Government Cyber
process, aimed at at procurement specialists, risk managers and cyber Resilience, NCSC
security professionals.

PUBLISHED
Supply chain mapping follows the principles of all good risk 16 February 2023

management; organisations need to understand the risks inherent in

New supply chain security guidance in the UK

When you have a moment:

https://www.sonatype.com/resources/vulnerability-timeline

https://www.sonatype.com/resources/vulnerability-timeline

Compared to respondents working in
information security, the IT managers are:

1.8 times more likely to 2.4 times more likely to 3.5 times more likely to
strongly agree to strongly agree to respond with "Less than 1
"We know the Software Bill of "We address remediation of day" to

Materials (SBOM) for every security issues as a regular part of "When our team becomes aware
application." development work (i.e., security of a vulnerability in an open

issues treated as normal defects)." source software component that
we use, how long does it take
(estimated) to mitigate this
vulnerability across our
application(s)?"

In an ideal world, management's perception should align with information security's experiences.

The scariest part: many aren't even aware

What you are deploying where?

Do you know: Where it came from?

What'’s in it?

(the answer better be yes)
((but it probably isn’t))

What you are deploying where?

Do you know: Where it came from?

What'’s in it?

(the answer better be yes)
((but it probably isn’t))

Questions you should he able to answer:

- What software is currently at each host?

- What software was on host H at time T?

- Why did a deploy happen to host H at time T?

- Where are artifacts of software version V deployed?

- When were artifacts of software version V no longer in use anywhere?

- What configuration did V have on host H at time T?

Every deployment should be logged

- How was the deployment initiated?
- When did the deployment happen?
- What went into the deployment?

- What was deployed to?

This information must be append-only, durable, and kept long term.

Every host matters

Production hosts
Developer environments
Beta environments
Embedded devices
Customer devices

Other environments (e.g., Lambda, CloudFlare Workers)

What you are deploying where?

Do you know: Where it came from?

What'’s in it?

(the answer better be yes)
((but it probably isn’t))

Gan you trace every artifact back
to sources you trust?

Verified path from only trust anchors

If you downloaded it:

- Do you trust the entity that built it?
- How do you know that entity actually built it?
- Did that entity verify 4% (and how do you know?)

If you built it yourself:

- How did you get the source?

- Is that source what the author intended to publish?

- Do you trust the tools you downloaded the source with?
- Do you trust the tools you verified the source with?

- Do you trust the tools you built the artifact with?

- Do you trust the host you’re building the source on?

Tained sources are real.

: '; Alex Birsan

ﬁ Feb 9,2021 - 11minread - . @ Listen

Dependency Confusion: How | Hacked Into
Apple, Microsoft and Dozens of Other

Companies
The Story of a Novel Supply Chain Attack

Ever since I started learning how to code, I have been fascinated by the level

of trust we put in a simple command like this one:

pip install package_name

Dependency Confusion (2021)

BLEEPINGCOMPUTER =

Researcher hacks over 35 tech firms in novel supply

chain attack

By Ax Sharma

February 9, 2021 01:04 PM 2

A researcher managed to breach over 35 major companies' internal systems,
including Microsoft, Apple, PayPal, Shopify, Netflix, Yelp, Tesla, and Uber, in
a novel software supply chain attack.

The attack comprised uploading malware to open source repositories including
PyPI, npm, and RubyGems, which then got distributed downstream
automatically into the company's internal applications.

Unlike traditional typosquatting attacks that rely on social engineering tactics
or the victim misspelling a package name, this particular supply chain attack is
more sophisticated as it needed no action by the victim, who automatically
received the malicious packages.

This is because the attack leveraged a unique design flaw of the open-source
ecosystems called dependency confusion.

Alex Birsan

Feb 9,2021 - 11 minreal

,4;’;.
9 n
" o

Dependency
Apple, Microsc

Companies
The Story of a NovelS|

Ever since I started learnin

of trust we put in a simple

pip install package_

Dependenc

While attempting to hack PayPal with me during the summer of 2020, Justin

Gardner (@Rhynorater) shared an interesting bit of Node.js source code found

on GitHub.

The code was meant for internal PayPal use, and, in its package.json file,

appeared to contain a mix of public and private dependencies — public

packages from npm, as well as non-public package names, most likely hosted

internally by PayPal. These names did not exist on the public npm registry at

the time.

000

"dependencies": {
"express": "74.3.0",
"dustjs-helpers": "~1.6.3",

"continuation-local-storage":

=T iag . 2er
g = 2.000%
g BE L e
o " w]110.0°

ll/\3.1.®ll,

IS in novel supply

panies' internal systems,
ix, Yelp, Tesla, and Uber, in

ource repositories including
ted downstream
ns.

n social engineering tactics
icular supply chain attack is
ctim, who automatically

flaw of the open-source

Solarwinds is largest’ cyberattack ever,
Microsoft president says

The hack sent malware to about 18,000 public and private organizations. -~ - -~
b i Ehe New Nork imes

Scope of Russian Hacking Becomes

Clear: Multiple U.S. Agencies Were
Hit
The Pentagon, intelligence agencies, nuclear labs and Fortune

500 companies use software that was found to have been

compromised by Russian hackers. The sweep of stolen data is
still being assessed.

SolarWinds (2020)

On the Feasibility of Stealthily Introducing
Vulnerabilities in Open-Source Software via

Hypocrite Commits phoronix

Qiushi Wu and Kangjie Lu
University of Minnesota
{wu000273, kjlu} @umn.edu

University Banned From Contributing To Linux
Kernel For Intentionally Inserting Bugs

forming of Open Source Initiative in 1998. A prominent example thousands of independent | Written by Michael Larabel in Linux Kernel on 21 April 2021 at 07:48 AM

Abstract—Open source software (OSS) has thrived since the Its openness also encoura

is the Linux kernel, which has been used by numerous major
software vendors and empowering billions of devices. The higher
availability and lower costs of OSS boost its adoption, while its

of the software. Such an (EDT. 117 Comments
not only allows higher fl

openness and flexibility enable quicker innovation. More impor- €volution, but is also belie Greg Kroah-Hartman has banned a US university from
tantly, the OSS development approach is believed to produce security [21]. trying to mainline Linux kernel patches over intentionally
more reliable and higher-quality software since it typically has A prominent example q

submitting questionable code with security implications
and other "experiments" in the name of research.

thousands of independent programmers testing and fixing bugs
of the software collaboratively.
In this paper, we instead investigate the insecurity of OSS from

one of the largest open-so
lines of code used by bil

Stemming from this research paper where researchers
from the University of Minnesota intentionally worked to stealthy introduce
vulnerabilities into the mainline Linux kernel. They intentionally introduced
use-after-free bugs into the kernel covertly for their research paper.

University of Minnesota & Linux (2021)

BLEEPINGCOMPUTER

GItGUBI’dlan BLOG VISITWEBSITE BOOKADEMO LEARNING CENTER

GitHub: Attackers stole login details of 100K npm user accounts

By Sergiu Gatlan

May 27,2022 02:40 PM 0

GitHub revealed today that an attacker stole the login details of roughly 100,000 npm
accounts during a mid-April security breach with the help of stolen OAuth app tokens
issued to Heroku and Travis-CI.

The threat actor successfully breached and exfiltrated data from private repositories
belonging to dozens of organizations.

Credential Leaks (constantly)

The State of Secrets
Sprawl 2023

The report reveals an unprecedented number of hard-
coded secrets in new GitHub commits over the year 2022.
And much more.

THOMAS SEGURA
g " share M W

The main question we seek to answer each year is, "How many new secrets
were exposed on GitHub in the preceding year? The answer is staggering: our
analysis reveals 10 million new secrets occurrences were exposed on GitHub
in 2022. That's a 67% increase compared to 2021.

GitGuardian also discovered that 1 GitHub code author out of 10 exposed a
secret in 2022. This number is a serious blow to the common belief that hard-
coded secrets are primarily the result of inexperienced developers. The reality
is that this can happen to any developer, regardless of their experience or

seniority.

BLEEPINGCOMPUTER

PHP's Git server hacked to add backdoors to PHP

source code

By Ax Sharma

March 29, 2021 03:32 AM 1

In the latest software supply chain attack, the official PHP Git repository was
hacked and the code base tampered with.

Yesterday, two malicious commits were pushed to the php-src Git repository
maintained by the PHP team on their git.php.net server.

The threat actors had signed off on these commits as if these were made by
known PHP developers and maintainers, Rasmus Lerdorf and Nikita Popov.

PHP git repository compromise (2021)

A Q.

JFrog
N— Malware Civil War -
S SR Malicious npm Packages
Open source developer corrupts widely-used .
libraries, affecting tons of projects / He pushed Ta rgetl ng M d IWa re
corrupt updates that trigger an infinite loop Auth ors
By Emma Roth JFrog Uncovers 25 Malicious Packages in npm Registry

Jan 9, 2022, 12:58 PM PST

By Andrey Polkovnychenko and Shachar Menashe ‘ February 22, 2022

A developer appears to have purposefully corrupted a pair of e snyk
open-source libraries on GitHub and software registry npm —

“faker.js” and “colors.js” — that thousands of users depend on, Alert: pea cenotwar module
rendering any project that contains these libraries useless, as . sabota g es npm developers inthe

node-ipc package to protest the
invasion of Ukraine

Written by:

Rogue maintainers (2022) $ Lrnra

March 16,2022 © 14 mins read

@TREND§ Entreprises Q

Linux Mint Website Hacked; ISO Downloads
Replaced with a Backdoor

22 février 2016

The systems of users who downloaded Linux Mint on February 20 may
be at risk after it was discovered that Hackers from Sofia, Bulgaria
managed to hack into Linux Mint, currently one of the most popular
Linux distributions available. According to Linux Mint's report, the hacker
tricked users into downloading a version of Linux Mint ISO with a
backdoor installed by replacing the download links on the site. The link
leads to one of their servers offering malicious ISO images of the Linux
Mint 17.3 Cinnamon edition. The website has been down since February
21, Sunday, resulting in the loss of thousands of downloads.

Linux Mint ISO hack (2016)

Fighting tainted sources is difficult

SigStore to have authors sign what they publish.

The Update Framework (TUF) to check that registries behave.
Mandate 2FA for publishing to mitigate leaked credentials.
Automated continuous monitoring of known risks (like CVESs).

Ultimately, you’re at the mercy of authors...

...50 choose the authors you’ll depend on wisely.

If you wish to make an apple
pie from scratch, you must first
invent the universe.

What you are deploying where?

Do you know: Where it came from?

What’s in it?

(the answer better be yes)
((but it probably isn’t))

One artifact, many inputs

Regular dependencies.
Dependencies from the build host.
Downloads during the build.
Vendored or inlined sources.
Bundled binary artifacts.

Any of the above transitively...

Heuristics will only get you so far.

Software
Bill of Materials

BoMs have existed elsewhere for ages

- Started in car manufacturing, since everywhere.
- Helps for:

- Design: which part should go there?

- Sales: what parts do | order?

- Manufacturing: which part goes here?
- Repair: which part broke?

- Recall: is the affected part present?

- Similar benefits for software.

Provenance (origin info) is useful

Security breadcrumbs
- Tells you if something is at-risk (e.g., via CVE + NVD)
- May tell you how it is at-risk
- Can also tell you if it is not!

- License and compliance information

- Supply chain funding (in theory)

- Waste identification

- Quality assessment (e.g., maintenance status/Eol)

Less important to an attacker

A list of potential weak-points, true.
But in practice, attackers:

- already have decent heuristics and other incomplete channels;
- can probe for weaknesses directly;

The SBOM is more incrementally-useful to defenders.

SBOMSs are hierarchical lists of contents

| produce one for my software.

It includes a list of records, each one holding:

Component name

Version string

Hash

UiD

Supplier name

Author

Relationship

Relationship assertion

Multiple data formats exist. Two common ones are:

Software Package Data Exchange (SPDX)
Software Identification Tagging (SWID)

SBOMSs can be combined

If you use my software, you can concatenate my SBOM.
Incomplete SBOMs are okay — there’s incremental benefit!

Don’t even need to publish your SBOMS!

Bingo Buffer

________ included in
i Unknown ! Acme
e ’ Application
v
included in "—_k_n_o:/vn_“
\

Carol’s Beblsy v @020 Ceemmeooeme
Compression included in —» Browser
Engine v3.1 v2.2

i Root | i Partial |

Figure 2: Conceptual SBOM tree with upstream relationship assertions

Component Name Supplier Version Author | Hash UID | Relationship | Relationship

Name String Assertion
Application Acme 1.1 Acme 0x123 | 234 | Self Known
|--- Browser Bob 2.1 Bob 0x223 | 334 | Included in Partial
|--- Compression Carol 3.1 Acme 0x323 | 434 | Included in Root

Engine

|--- Buffer Bingo 2.2 Acme 0x423 | 534 | Included in Unknown

SBOMSs also combine horizontally

Doesn’t have to be “included in”:

“was built by”

- “was present when built”
- “generated by”

- “patched with”

- “read data from”

- etc.

You can keep adding info and improving analysis independently.

What you are deploying where?

Do you know: Where it came from?

What'’s in it?

(the answer better be yes)

