
Xylem: flexible and high-performance
structured storage via dynamic data-flow

Jon Gjengset (MIT CSAIL)
Advisors: Malte Schwarzkopf, Eddie Kohler (Harvard), M. Frans Kaashoek, Robert Morris

Abstract. Xylem is a database design that targets read-
heavy web applications. It materializes indexed query re-
sults to speed up reads, and automatically updates these
cached results as writes arrive. Realized naively, this ap-
proach would incur significant memory overhead, especially
when queries are similar, or when some results are rarely
accessed. Xylem introduces two key techniques novel to
streaming data-flow systems to overcome this: partial ma-
terialization, and reuse of shared operators and state. Us-
ing these techniques Xylem efficiently handles query set
changes at runtime with minimal downtime, allowing ap-
plications to evolve over time. Experiments show that Xy-
lem outperforms state-of-the-art systems, and adapts to new
query sets while reads and writes remain live.

1. Research Problem and Motivation
An ideal storage system would provide the read performance
of a key-value cache with the convenience and flexibility of
relational queries. To emulate this ideal, web applications
often supplement their database (DB) with fast in-memory
caches (e.g., memcached [20]). The durable, transactional
DB offers a relational query interface to developers [5], and
the cache efficiently serves pre-computed query results [23].

However, this two-tier construction comes at a price.
First, the cache and the DB must now be coordinated: the ap-
plication must invalidate entries in the cache on writes, and
recompute query results on cache misses. This requires com-
plex and error-prone techniques to ensure correct application
semantics and avoid severe performance collapses [23]. Sec-
ond, it lacks flexibility: adding new queries or changing the
schema requires either discarding the cache and migrating
the system via planned downtime, or implementing complex
manual migrations [27]. Since web application queries and
schemas can change multiple times per week [7, 9, 25], this
poses a major headache for developers.

Xylem combines and extends ideas from databases and
streaming data-flow systems to address these challenges.
It transparently constructs and maintains a fast cache of
pre-computed query results, supports relational queries,
and allows online, backwards-compatible migrations to new
schemas and queries. To provide these features, Xylem must
overcome several intertwined problems: the space overhead
of maintaining many cached query results can easily become
prohibitive, existing techniques for updating cached results

reads

Xylem

Joint dynamic 
data-flow
graph

Materialized 
views

reads

Base
tables

Relational 
queries

Classic DB 
operation

writes
writes Base

tables

Figure 1: Classic databases compute read queries from base
tables, while Xylem feeds writes through a dynamic, live-
adapting data-flow graph to update materialize views.

do not scale to many queries, and current stream processing
systems cannot adapt to changing queries at runtime.

2. Background and Related Work
Some DBs support materialized views of query results, and
existing work shows how to choose [3, 12] and update [1, 16]
them. Those that support incremental maintenance of such
views are typically pull-based, i.e., they update the views in
response to data changes via whole-query re-evaluation, cus-
tom “triggers” [1, 14, 19], or incremental “delta queries” [2,
22]. Except in systems like SharedDB [11] that exploit view
overlap, these views do not share state or compute, and if a
new view is added, it must be computed afresh.

In contrast, stream-processing systems push updates
through a fixed query plan to update materialized, windowed
state [4, 6, 15, 26, 28]. Data-flow simplifies parallel up-
date processing [13], including on streams [18, 21], and can
incrementally update views that delta queries cannot [17].
However, with a fixed query plan, streaming and data-flow
systems must discard all state and start anew to add queries.

Schema evolution systems automate database changes [8],
but most operate offline (with the exception of F1 [24]).

3. Approach and Uniqueness
Figure 1 illustrates the central idea of Xylem. Instead of
queries processing tuples from base-tables on every read,
Xylem feeds new writes through a joint, dynamic data-flow
graph to update materialized views of query results. Data-
flow is attractive as it is amenable to multi-core and multi-
machine distribution, and is inherently incremental. The key
challenges to make this feasible are (i) to minimize over-



heads of materialized views and write-side updates, and
(ii) to quickly adapt the data-flow graph as the query set
changes. To achieve these, we developed two extensions to
existing data-flow systems.
Query reuse. Queries often share common subexpressions,
such as joins and aggregations. By materializing state for
these expressions only once, we reduce overhead and amor-
tize update cost. To detect common subexpressions, we ap-
ply an extended version of Finkelstein’s query graphs [10].
When we add a new query, we reuse the query with the
longest common subexpression prefix, and dynamically ex-
pand the data-flow graph from existing operators.
Partial materialization. Some queries see skewed key pop-
ularity distributions, and need not expend space and time
on maintaining rarely-read results. Instead, Xylem can leave
“holes” in its materializations for rare keys. Xylem can also
support cache eviction by replacing existing records with
holes. A read from such a key triggers a backwards query
to fill in its result. Executing such backwards queries within
an active data-flow system poses thorny consistency chal-
lenges: for example, Xylem must ensure that no write is re-
flected more than once in the result, even though updates for
the same key may race in the data-flow graph.
Uniqueness. Xylem is unique in its ability to modify a data-
flow computation without discarding existing state and while
keeping reads and writes live. It also combines push-based
streaming updates with pull-based backwards queries. State-
of-the-art data-flow systems like Naiad [21] can do neither
of these since they violate data-flow invariants (e.g., past
records cannot be re-sent) or implementation decisions (e.g.,
static code generation for a fixed computation).
Cost. Xylem achieves fast reads by increasing memory us-
age and reducing consistency. Materialized views allow fast
queries, but take up space proportional to the number of re-
sults they hold. Reduced consistency avoids internal locking
and synchronization, but means that writes are not visible
until they have propagated through the data-flow graph.

4. Results and Contributions
We implemented a prototype of Xylem in 20k lines of Rust.
Below, we show that (i) Xylem outperforms both existing
databases and the widely used MySQL/memcached stack,
and (ii) that Xylem can migrate without downtime.

Figure 2 shows how throughput and latency scale with of-
fered load in a simple news aggregator. 95% of requests read
the title and vote count of a random article; the other 5% per-
form writes by voting for a random article. In MySQL, vote
counts are manually materialized: an UPDATE statement incre-
ments the vote count on each write; the commercial “System
Z” uses a materialized view. Both struggle to scale beyond
800k requests/sec. The two-tier MySQL/memcached stack
scales to 2M requests/sec, but its read misses are costly due
to the “thundering herd” problem [23, §3.2.1]. Xylem, by
contrast, performs on-par with a memcached-only setup—

0 1.0M 2.0M 3.0M 4.0M 5.0M 6.0M
Throughput [requests/sec]

0

25

50

75

100

99
%

-i
le

la
te

nc
y

[µ
s] MySQL (manual mat.)

System Z
MySQL+memcached
memcached
Xylem

Figure 2: With 95% reads, Xylem outperforms MySQL,
commercial System Z, and the MySQL/memcached stack;
it performs on-par with (non-durable) memcached.

0
250K
500K

T
hr

ou
gh

pu
t Total write throughput % non-blocking new reads

−15 0 30 60 90
Time after migration [sec]

0%

100%

Figure 3: Xylem starts serving a new query without down-
time when combining query reuse and partial materializa-
tion. Green is % of reads immediately satisfied (i.e., no back-
wards query to fill in partial materialization).

even though memcached neither has durable storage nor a
relational query interface. Both systems taper off beyond
5M requests/sec where they saturate all cores on the server,
mostly doing read and write system calls. Other workload
mixes, e.g., with skewed popularity distributions or a 50%
read/write workload, show similar results.

To test Xylem’s live-migration, we change the applica-
tion to use star ratings instead of binary “up/down” votes.
Figure 3 shows that Xylem transitions without perceptible
downtime. The old, vote-based view remains live through-
out, allowing for a rolling application upgrade. The need
to maintain both queries accounts for the drop in through-
put from 400k to 330k writes/sec. Query reuse lets Xylem
compute ratings using the existing vote counts rather than
re-counting. Partial materialization builds the new material-
ized view incrementally as the system runs, and queries to
fill “holes” are served using the reused vote counts, and have
minimal impact on the throughput of new writes. Due to a
skewed key popularity, over 90% of reads are served from
the new materialized view after a few seconds.

Contributions. Xylem makes three primary contributions:
(i) space- and time-efficient materialized view maintenance,
viz. query reuse and partial materialization; (ii) live adap-
tation of data-flow computations while preserving existing
state; and (iii) a prototype showing that Xylem outperforms
competing setups and matches key-value store performance.
Together, these allow us to improve web application perfor-
mance while reducing complexity for developers.



References
[1] Parag Agrawal, Adam Silberstein, Brian F. Cooper,

Utkarsh Srivastava, and Raghu Ramakrishnan. “Asyn-
chronous View Maintenance for VLSD Databases”.
In: Proceedings of the 2009 ACM SIGMOD Inter-
national Conference on Management of Data. Provi-
dence, Rhode Island, USA, June 2009, pp. 179–192.

[2] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and
Milos Nikolic. “DBToaster: Higher-order Delta Pro-
cessing for Dynamic, Frequently Fresh Views”. In:
Proceedings of the VLDB Endowment 5.10 (June
2012), pp. 968–979.

[3] Khalil Amiri, Sanghyun Park, Renu Tewari, and Sri-
ram Padmanabhan. “DBProxy: a dynamic data cache
for web applications”. In: Proceedings of the 19th In-
ternational Conference on Data Engineering (ICDE).
Mar. 2003, pp. 821–831.

[4] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M.
Datar, K. Ito, R Motwani, et al. STREAM: The Stan-
ford Data Stream Management System. Technical Re-
port 2004-20. Stanford InfoLab, 2004.

[5] David F. Bacon, Nathan Bales, Nico Bruno, Brian
F. Cooper, Adam Dickinson, Andrew Fikes, Camp-
bell Fraser, et al. “Spanner: Becoming a SQL Sys-
tem”. In: Proceedings of the 2017 ACM SIGMOD In-
ternational Conference on Management of Data (SIG-
MOD). Chicago, Illinois, USA, 2017, pp. 331–343.

[6] Badrish Chandramouli, Jonathan Goldstein, Mike Bar-
nett, Robert DeLine, Danyel Fisher, John C. Platt,
James F. Terwilliger, et al. “Trill: A High-performance
Incremental Query Processor for Diverse Analytics”.
In: Proceedings of the VLDB Endowment 8.4 (Dec.
2014), pp. 401–412.

[7] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and
Carlo Zaniolo. “Automating the Database Schema
Evolution Process”. In: The VLDB Journal 22.1 (Feb.
2013), pp. 73–98.

[8] Carlo A. Curino, Hyun J. Moon, and Carlo Zaniolo.
“Graceful Database Schema Evolution: The PRISM
Workbench”. In: Proceedings of the VLDB Endow-
ment 1.1 (Aug. 2008), pp. 761–772.

[9] Dror G. Feitelson, Eitan Frachtenberg, and Kent L.
Beck. “Development and Deployment at Facebook”.
In: IEEE Internet Computing 17.4 (July 2013), pp. 8–
17.

[10] Sheldon Finkelstein. “Common Expression Analysis
in Database Applications”. In: Proceedings of the
1982 ACM SIGMOD International Conference on
Management of Data. Orlando, Florida, USA, June
1982, pp. 235–245.

[11] Georgios Giannikis, Gustavo Alonso, and Donald
Kossmann. “SharedDB: Killing One Thousand Queries

with One Stone”. In: Proceedings of the VLDB Endow-
ment 5.6 (Feb. 2012), pp. 526–537.

[12] Himanshu Gupta and Inderpal Singh Mumick. “Selec-
tion of views to materialize in a data warehouse”. In:
IEEE Transactions on Knowledge and Data Engineer-
ing 17.1 (Jan. 2005), pp. 24–43.

[13] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. “Dryad: Distributed Data-parallel
Programs from Sequential Building Blocks”. In: Pro-
ceedings of the 2nd ACM SIGOPS European Confer-
ence on Computer Systems (EuroSys). Lisbon, Portu-
gal, Mar. 2007, pp. 59–72.

[14] Bryan Kate, Eddie Kohler, Michael S. Kester, Neha
Narula, Yandong Mao, and Robert Morris. “Easy
Freshness with Pequod Cache Joins”. In: Proceedings
of the 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI). Seattle, Washing-
ton, USA, Apr. 2014, pp. 415–428.

[15] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas
Kedigehalli, Christopher Kellogg, Sailesh Mittal, Jig-
nesh M. Patel, et al. “Twitter Heron: Stream Pro-
cessing at Scale”. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management
of Data. Melbourne, Victoria, Australia, May 2015,
pp. 239–250.

[16] Ki Yong Lee and Myoung Ho Kim. “Optimizing the
Incremental Maintenance of Multiple Join Views”. In:
Proceedings of the 8th ACM International Workshop
on Data Warehousing and OLAP (DOLAP). Bremen,
Germany, Nov. 2005, pp. 107–113.

[17] Frank McSherry. Implementing a TPC-H-like evalu-
ation. Blog post. URL: https : / / github . com /
frankmcsherry / blog / blob / master / posts /

2017-04-24.md (visited on 05/01/2017).
[18] Frank McSherry, Derek G. Murray, Rebecca Isaacs,

and Michael Isard. “Differential dataflow”. In: Pro-
ceedings of the 6th Biennial Conference on Innovative
Data Systems Research (CIDR). Asilomar, California,
USA, Jan. 2013.

[19] John Meehan, Nesime Tatbul, Stan Zdonik, Cansu
Aslantas, Ugur Cetintemel, Jiang Du, Tim Kraska, et
al. “S-Store: Streaming Meets Transaction Process-
ing”. In: Proceedings of the VLDB Endowment 8.13
(Sept. 2015), pp. 2134–2145.

[20] memcached - a distributed memory object caching sys-
tem. URL: https://www.memcached.org/ (visited
on 09/15/2017).

[21] Derek G. Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martı́n Abadi. “Na-
iad: A Timely Dataflow System”. In: Proceedings of
the 24th ACM Symposium on Operating Systems Prin-
ciples (SOSP). Farmington, Pennsylvania, USA, Nov.
2013, pp. 439–455.

https://github.com/frankmcsherry/blog/blob/master/posts/2017-04-24.md
https://github.com/frankmcsherry/blog/blob/master/posts/2017-04-24.md
https://github.com/frankmcsherry/blog/blob/master/posts/2017-04-24.md
https://www.memcached.org/


[22] Milos Nikolic, Mohammad Dashti, and Christoph
Koch. “How to Win a Hot Dog Eating Contest: Dis-
tributed Incremental View Maintenance with Batch
Updates”. In: Proceedings of the 2016 ACM SIGMOD
International Conference on Management of Data
(SIGMOD). San Francisco, California, USA, 2016,
pp. 511–526.

[23] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McEl-
roy, et al. “Scaling Memcache at Facebook”. In: Pro-
ceedings of the 10th USENIX Conference on Net-
worked Systems Design and Implementation (NSDI).
Lombard, Illinois, USA, Apr. 2013, pp. 385–398.

[24] Ian Rae, Eric Rollins, Jeff Shute, Sukhdeep Sodhi,
and Radek Vingralek. “Online, Asynchronous Schema
Change in F1”. In: Proceedings of the VLDB Endow-
ment 6.11 (Aug. 2013), pp. 1045–1056.

[25] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie
Williams, Kent Beck, and Michael Stumm. “Continu-

ous Deployment at Facebook and OANDA”. In: Pro-
ceedings of the 38th International Conference on Soft-
ware Engineering (ICSE). Austin, Texas, USA, 2016,
pp. 21–30.

[26] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik
Ramasamy, Jignesh M. Patel, Sanjeev Kulkarni, Ja-
son Jackson, et al. “Storm@Twitter”. In: Proceedings
of the 2014 ACM SIGMOD International Conference
on Management of Data. Snowbird, Utah, USA, June
2014, pp. 147–156.

[27] Jacqueline Xu. Online migrations at scale. Stripe en-
gineering blog. URL: https://stripe.com/blog/
online-migrations (visited on 02/01/2017).

[28] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy
Hunter, Scott Shenker, and Ion Stoica. “Discretized
Streams: Fault-tolerant Streaming Computation at
Scale”. In: Proceedings of the 24th ACM Symposium
on Operating Systems Principles (SOSP). Farmington,
Pennsylvania, USA, Nov. 2013, pp. 423–438.

https://stripe.com/blog/online-migrations
https://stripe.com/blog/online-migrations

	Research Problem and Motivation
	Background and Related Work
	Approach and Uniqueness
	Results and Contributions

